ON HERMITE-FEJÉR INTERPOLATION IN A JORDAN DOMAIN

CHARLES K. CHUI AND XIE-CHANG SHEN

ABSTRACT. The Hermite-Fejér interpolation problem on a Jordan domain is studied. Under certain mild conditions on the smoothness of the boundary curve, we give both uniform and L^p , 0 , estimates on the rate of convergence. Our estimates are sharp even for the unit disk setting.

1. Introduction

Let D be a Jordan domain in the complex plane $\mathbb C$ with boundary Γ and $z_k=z_{nk}$, $k=1,\ldots,n$, be sample points chosen on Γ . Also, let q be a nonnegative integer and $N=N_n:=(q+1)n-1$. In this paper we will consider the interpolation problem:

(1.1)
$$\widetilde{H}_N(f; z_k) = f(z_k), \qquad \widetilde{H}_N^{(j)}(f; z_k) = a_k^{(j)},$$

 $k=1,\ldots,n$ and $j=1,\ldots,q$, where f belongs to the class $A(\overline{D})$ of functions analytic in D and continuous on $\overline{D}=D\cup\Gamma$, and $\widetilde{H}_N(f;\cdot)\in\pi_N$, the space of all polynomials with degree at most N. Note that since f is not necessarily differentiable at z_k relative to \overline{D} and the family of data values $\{a_k^{(j)}\}$ is arbitrarily given, the problem under consideration is different from the Hermite interpolation problem. In particular, by choosing $a_k^{(j)}=0$ for all $k=1,\ldots,q$, the problem

(1.2)
$$H_N(f; z_k) = f(z_k), \qquad H_N^{(j)}(f; z_k) = 0,$$

 $k=1\,,\ldots\,,n$ and $j=1\,,\ldots\,,q$, where $f\in A(\overline{D})$ and $H_N(f\,;\cdot)\in\pi_N$, is usually called the $(0\,,1\,,\ldots\,,q)$ Hermite-Fejér Interpolation Problem.

It is well known that even for the unit disk $U=\{z:|z|<1\}$, any q, and $z_k=e^{i2\pi k/n}$, there exists an $f\in A(\overline{U})$ such that $H_N(f;\cdot)$ does not converge uniformly on \overline{U} to f (see [13]). In this paper, under certain smoothness conditions on the Jordan curve Γ , we will first give a necessary and sufficient

Research of the first author was supported in part by the National Science Foundation under Grant Nos. DMS-86-02337 and DMS 89-01345 and SDIO/IST managed by ARO under Contract No. DAAL 03-87-K-0025; research of the second author supported by NSFC and the Chinese National Commission of Education.

Received by the editors October 11, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 41A05, 41A10, 41A25.

Key words and phrases. Hermite-Fejér interpolation, rate of convergence, Jordan domain, asymptotic formulas.

condition on $f \in A(\overline{D})$ that guarantees uniform convergence of $\widetilde{H}_N(f;\cdot)$ to f on \overline{D} for $a_n^{(j)} = o(n^j/\ln n)$, and derive the order of uniform convergence on \overline{D} of the Hermite-Fejér interpolatory polynomials $H_N(f;\cdot)$ to f in terms of the modulus continuity of f. We will next show that for $a_n^{(j)} = o(n^j)$, $\widetilde{H}_N(f;\cdot)$ always converges in $L^p(\Gamma)$ to $f \in A(\overline{D})$, $0 , and, in fact, a sharp order of convergence of <math>H_N(f;\cdot)$ in $L^p(\Gamma)$, 0 , will be given.

Of course, for q=0, problems (1.1) and (1.2) become the Lagrange interpolation problem:

(1.3)
$$L_N(f; z_k) = f(z_k),$$

N=n-1, $k=1,\ldots,n$, and $L_N\in\pi_N$. For an analytic Jordan curve Γ , Curtiss [3] has shown that $\|L_N(f;\cdot)-f\|_2\to 0$ for all $f\in A(\overline{D})$ by using the Fejér nodes z_k on Γ . Here and throughout, $\|\cdot\|_p$ denotes the L^p -norm on Γ . Later, for a Jordan curve Γ of class $C^{2+\delta}$, for some $\delta>0$, Al'per and Kalinogorskaja [2] improved the result in [3] by showing that

$$\|L_N(f;\cdot)-f\|_p\to 0$$

for any p, $0 . Recently, this result was further improved by the second author and Zhong [10] to a Jordan curve <math>\Gamma$ of class $C^{1+\delta}$ where the order of approximation $O(\omega(f;\frac{1}{N}))$ is also given. Here and throughout, $\omega(f;\delta)$ denotes the modulus of continuity of f on Γ using the *uniform norm*. We remark that the L^p , $0 , modulus of continuity cannot be used even for the <math>L^p$ estimate of $\|L_N(f;\cdot) - f\|_p$.

The only result in the literature for Hermite-Féjer interpolation on a Jordan curve different from the circle was obtained by Gaier [6], where an analytic curve Γ and q=1 are considered and the convergence is only uniform on compact subsets of D. Various recent results concerning convergence on the unit disk of Hermite-Féjer interpolatory polynomials at the nth roots of unity can be found in Szabados and Varma [11], Varma [12], and the second author [8, 9].

2. Main results

Throughout this paper, $w=\Phi(z)$ denotes the exterior conformal map from $\mathbb{C}\backslash\overline{D}$ onto |w|>1 such that $\Phi(\infty)=\infty$ and $\Phi'(\infty)>0$. Let $\Psi=\Phi^{-1}$ and write

(2.1)
$$z = \Psi(w) = dw + a_0 + a_1 w^{-1} + \cdots,$$

where $d=\Psi'(\infty)>0$. It will be clear that by a standard transformation, we may assume, without loss of generality, that d=1. Extend Ψ to a continuous function on $|w|\geq 1$ and set $z_k=z_{nk}=\Psi(w_{nk})$ where $w_{nk}=w_k=e^{i2\pi k/n}$. Recall that the z_{nk} 's are usually called the Fejér points on $\Gamma=\partial D$. We need some assumptions on the smoothness of Γ .

Definition. (i) Γ is said to be of class j_1 if $\Psi'(w)$ exists and is continuous on $|w| \geq 1$, and its (uniform) modulus of continuity $\sigma_1(t)$ on |w| = 1 satisfies the condition

(2.2)
$$\int_0^a \frac{\sigma_1(t)}{t} |\ln t|^2 dt < \infty, \qquad a > 0.$$

(ii) Γ is said to be of class j_2 if $\Psi^{''}(w)$ exists and is continuous on $|w| \geq 1$, and its (uniform) modulus of continuity $\sigma_2(t)$ on |w|=1 satisfies the condition

(2.3)
$$\int_0^a \frac{\sigma_2(t)}{t} |\ln t| \, dt < \infty, \qquad a > 0.$$

It is well known [1] that if Γ belongs to class j_1 , then Ψ satisfies:

$$(2.4) 0 < C_1 \le \left| \frac{\Psi(w) - \Psi(u)}{w - u} \right| \le C_2$$

for all $w \neq u$ and |w|, $|u| \geq 1$. We remark that in [1] it is shown that (2.4) already holds for those Γ with

$$\int_0^a \frac{\sigma_1(t)}{t} dt < \infty.$$

In addition, it is shown in the same paper that

$$(2.5) 0 < C_1 \le |\Psi'(w)| \le C_2$$

for all w, $|w| \ge 1$.

Let

(2.6)
$$\omega_n(z) = \prod_{j=1}^{n} (z - z_j).$$

Then for each k, $(z-z_k)/\omega_n(z)$ is analytic at z_k , so that we can write

(2.7)
$$\left(\frac{z-z_k}{\omega_n(z)}\right)^{q+1} = \sum_{\nu=0}^{\infty} \alpha_{k\nu} (z-z_k)^{\nu},$$

where $\alpha_{k\nu} = \alpha_{k\nu}(q, n)$, $q = 0, 1, \ldots$. In the following, we will give an asymptotic estimate of $\alpha_{k\nu} = \alpha_{k\nu}(q, n)$ as $n \to \infty$. We need the notation

(2.8)
$$\Omega_n(w) = \prod_{k=1}^n \frac{z - z_k}{w - w_k}, \qquad z = \Psi(w).$$

Theorem 1. Let Γ belong to class j_2 . Then for each ν and $q=0,1,\ldots$,

(2.9)
$$\alpha_{k\nu} = \alpha_{k\nu}(q, n) = O\left(\frac{1}{n^{q+1-\nu}}\right)$$

and the estimate is uniform in k, $1 \le k \le n$, as $n \to \infty$.

Here and throughout, $\sum_{l\neq k}$ denotes the summation over all $l=1,\ldots,n$ with $l\neq k$. To construct the interpolatory polynomials $\widetilde{H}_N(f;\cdot)$ and $H_N(f;\cdot)$

we introduce the fundamental functions:

$$(2.10) A_{kj}(z) = \left(\frac{\omega_n(z)}{z - z_k}\right)^{q+1} \frac{(z - z_k)^j}{j!} \sum_{\nu=0}^{q-j} \alpha_{k\nu} (z - z_k)^{\nu},$$

where $j=0,\ldots,q$ and $l=1,\ldots,n$. It is obvious that $A_{kj}\in\pi_N$ and we will verify that they satisfy

(2.11)
$$A_{k,i}^{(\nu)}(z_l) = \delta_{kl}\delta_{\nu,i}, \qquad k, l = 1, \ldots, n; \ \nu, j = 0, \ldots, q,$$

where, as usual, δ_{ij} denotes the Kronecker delta.

Theorem 2. For any $f \in A(\overline{D})$, any nonnegative integer q, and arbitrary complex numbers $a_k^{(j)}$, $k = 1, \ldots, n$, $j = 1, \ldots, q$, there exists a unique $\widetilde{H}_N(f;\cdot) \in \pi_N$ satisfying the interpolation conditions (1.1). Furthermore, $\widetilde{H}_N(f;\cdot)$ is given by

(2.12)
$$\widetilde{H}_{N}(f;\cdot) = \sum_{k=1}^{n} f(z_{k}) A_{k0}(\cdot) + \sum_{k=1}^{n} \sum_{j=1}^{q} a_{k}^{(j)} A_{kj}(\cdot).$$

In addition, under the assumption that Γ belongs to the class j_2 , the fundamental functions A_{kj} satisfy the following estimates:

(2.13)
$$\max_{z \in \overline{D}} \sum_{k=1}^{n} |A_{kj}(z)| = O\left(\frac{\ln n}{n^{j}}\right), \qquad j = 0, \dots, q,$$

and for 1 ,

(2.14)
$$\left\| \sum_{k=1}^{n} b_k A_{kj}(\cdot) \right\|_{n} = O\left(\frac{1}{n^j}\right) \max_{1 \le k \le n} |b_k|, \qquad j = 0, \dots, q,$$

for any sequence $\{b_k\}$, $k = 1, \ldots, n$.

Of course, if we choose $a_k^{(j)}=0$, then the polynomials $\widetilde{H}_N(f;\cdot)$ become $H_N(f;\cdot)$ that satisfy the Hermite-Fejér interpolation condition (1.2). It is well known that even for the case D=U, the unit disk, there exists an $f\in A(\overline{U})$ such that $H_N(f;\cdot)$ does not converge uniformly to f on \overline{U} . We have the following result on the order of uniform approximation.

Theorem 3. Let Γ belong to class j_2 and $f \in A(\overline{D})$. Then for any nonnegative integer q,

(2.15)
$$\max_{z \in \overline{D}} |f(z) - H_N(f; z)| = O\left(\omega\left(f; \frac{1}{n}\right) \ln n\right).$$

We remark that this result is sharp as shown by the second author in [9] for D = U. For nonzero $a_k^{(j)}$, we have the following result.

Theorem 4. Let Γ belong to class j_2 , $f \in A(\overline{D})$, and q be any nonnegative integer. Suppose that

(2.16)
$$\max_{1 \le k \le n} \left| a_k^{(j)} \right| = o\left(\frac{n^j}{\ln n}\right), \qquad j = 1, \dots, q,$$

and

(2.17)
$$\lim_{\delta \to 0} \omega(f; \delta) \ln \delta = 0.$$

Then

$$\lim_{N\to\infty}\max_{z\in\overline{D}}\left|f(z)-\widetilde{H}_N(f\,;\,z)\right|=0.$$

For L^p convergence, $0 , we no longer need <math>\ln n$ in (2.15) as in the following

Theorem 5. Let Γ belong to class j_2 , $f \in A(\overline{D})$, q be any nonnegative integer, and 0 . Then

$$||f - H_N(f; \cdot)||_p = O\left(\omega\left(f; \frac{1}{n}\right)\right).$$

Again, this result is sharp even for D = U as shown in [10]. For nonzero $a_k^{(j)}$, we have the following result.

Theorem 6. Let Γ belong to class j_2 , $f \in A(\overline{D})$, q be any nonnegative integer, and $\{a_n^{(j)}\}$ satisfy

(2.19)
$$\max_{1 \le k \le n} \left| a_k^{(j)} \right| = o(n^j), \qquad j = 1, \dots, q.$$

Then

$$\lim_{N \to \infty} \left\| f - \widetilde{H}_N(f; \cdot) \right\|_p = 0, \qquad 0$$

3. Proof of Theorem 1

To establish Theorem 1, we need three lemmas.

Lemma 1. Let Ψ'' be continuous on $|w| \ge 1$. Then for each k = 1, ..., n,

(3.1)
$$\omega'_n(z_k) = n \frac{\Omega_n(w_k)}{\Psi'(w_k)w_k}$$

and

(3.2)
$$\sum_{l \neq k} \frac{1}{z_k - z_l} = \frac{1}{2} \frac{\omega_n''(z_k)}{\omega_n'(z_k)}$$
$$= \frac{1}{2\Psi'(w_k)} \left[\frac{n-1}{w_k} + \frac{2\Omega_n'(w_k)}{\Omega_n(w_k)} - \frac{\Psi''(w_k)}{\Psi'(w_k)} \right].$$

Proof. From (2.6) and (2.8), we have

$$\omega_n(z) = (w^n - 1)\Omega_n(w),$$

so that

(3.3)
$$\omega'_n(z) = [nw^{n-1}\Omega_n(w) + (w^n - 1)\Omega'_n(w)] \frac{1}{\Psi'(w)},$$

from which (3.1) follows. To establish the two identities in (3.2), we first use logarithmic derivatives to obtain

$$\frac{\beta_k'(z)}{\beta_k(z)} = \sum_{l \neq k} \frac{1}{z - z_l}$$

with $\beta_k(z) := \omega_n(z)/(z-z_k)$. Since $\beta_k(z_k) = w_n'(z_k)$ and

$$\begin{split} \beta_k'(z_k) &= \lim_{z \to z_k} \frac{\omega_n'(z)(z-z_k) - \omega_n(z)}{(z-z_k)^2} \\ &= \lim_{z \to z_k} \frac{\omega_n'(z)(z-z_k) - \left[\omega_n'(z_k)(z-z_k) + \frac{\omega_n''(z_k)}{2}(z-z_k)^2 + o(z-z_k)^2\right]}{(z-z_k)^2} \\ &= \lim_{z \to z_k} \frac{w_n''(z_k)(z-z_k)^2 - \frac{w_n''(z_k)}{2}(z-z_k)^2 + o(z-z_k)^2}{(z-z_k)^2} = \frac{1}{2}\omega_n''(z_k), \end{split}$$

we have established the first identity in (3.2). To derive the second identity in (3.2), we first observe that

$$\begin{split} \omega_n''(z_k) &= n(n-1)w_k^{-2}\Omega_n(w_k) + 2nw_k^{-1}\Omega_n'(w_k)\frac{1}{\left[\Psi'(w_k)\right]^2} \\ &- nw_k^{-1}\Omega_n(w_k)\frac{\Psi''(w_k)}{\left[\Psi'(w_k)\right]^3} \end{split}$$

by using (3.3) and the fact that $w_k^n=1$. By substituting this quantity and the quantity in (3.1) into $\omega_n''(z_k)/\omega_n'(z_k)$, we arrive at the second identity in (3.2). \square

In the following, we give certain estimates on Ω_N and its relation with Ω'_N .

Lemma 2. If Γ belongs to class j_1 , then

(3.4)
$$\max_{|w| \ge 1} \left| \Omega_n(w) - 1 \right| = o\left(\frac{1}{\ln n}\right).$$

Furthermore, if Γ belongs to class j_2 , then

(3.5)
$$\max_{|w| \ge 1} \left| \frac{\Omega'_n(w)}{\Omega_n(w)} \right| = o(1).$$

Proof. To prove (3.4), let

(3.6)
$$g(w, u) = \begin{cases} (\Psi(w) - \Psi(u))/(w - u) & \text{for } u \neq w, \\ \Psi'(w) & \text{for } u = w, \end{cases}$$

where |u|, $|w| \ge 1$. Hence, from the definition of $\Omega_N(w)$ and g(w, u), we have

(3.7)
$$\ln \Omega_N(w) = \sum_{k=1}^n \ln g(w, w_k),$$

where the branch of the logarithm is taken so that $\ln 1 = 0$. On the other hand, it is clear that

(3.8)
$$\frac{\partial \ln g(w, u)}{\partial u} = \frac{-\Psi'(u)(w - u) + (\Psi(w) - \Psi(u))}{(w - u)(\Psi(w) - \Psi(u))}$$

and

(3.9)
$$\|\Psi(w) - \Psi(u) - \Psi'(u)(w - u)\| = \left| \int_{\gamma} [\Psi'(\xi) - \Psi'(u)] d\xi \right| \\ \leq C_1 \sigma_1(|w - u|) \int_{\gamma} |d\xi| \leq C_2 |w - u| \sigma_1(|w - u|),$$

where γ is a contour joining u to w on $|\xi| \ge 1$ with length bounded by $\frac{\pi}{2}|u-w|$ and σ_1 denotes the modulus of continuity of Ψ' . By using (2.4), (3.8), and (3.9), we have

$$\left|\frac{\partial \ln g(w\,,\,u)}{\partial u}\right| \leq C \frac{\sigma_1(|w-u|)}{|w-u|}\,,$$

for |u|, $|w| \ge 1$. Hence, from the hypothesis that Γ belongs to class j_1 , as a function of u on |u|=1, the function $\ln g(w,u)$ satisfies the Dini condition uniformly on |w|=1. It follows that

(3.10)
$$\ln g(w, u) = \sum_{j=1}^{\infty} \frac{a_j(w)}{u^j}$$

uniformly on |u|, $|w| \ge 1$. From the property

$$\sum_{k=1}^{n} w_k^{-j} = \begin{cases} 0 & \text{if } n \nmid j, \\ n & \text{if } n \mid j \end{cases}$$

of the nth roots of unity, we have, from (3.7),

(3.11)
$$\ln \Omega_n(w) = n \sum_{l=1}^{\infty} a_{ln}(w)$$

uniformly on $|w| \ge 1$. To estimate $a_j(w)$, since Γ belongs to class j_1 we may use the Hardy-Littlewood inequality (cf. [4, p. 100])

$$|\Psi''(u)| \le C \frac{\sigma_1(|u|-1)}{|u|-1}, \qquad |u| > 1.$$

Indeed, letting $1 < \rho \le \frac{3}{2}$, we have from (3.8), for |w| = 1,

$$\begin{split} \int_{|u|=\rho} \left| \frac{\partial^{2} \ln g(w, u)}{\partial u^{2}} \right| |du| \\ &= \int_{|u|=\rho} \left| \frac{\Psi''(u)}{\Psi(u) - \Psi(w)} + \frac{(\Psi'(u))^{2}}{(\Psi(u) - \Psi(w))^{2}} - \frac{1}{(w-u)^{2}} \right| |du| \\ &\leq \int_{|u|=\rho} \left| \frac{\Psi''(u)}{\Psi(n) - \Psi(w)} \right| |du| \\ &+ \int_{|u|=\rho} \left| \frac{\Psi'(u)}{\Psi(u) - \Psi(w)} - \frac{1}{w-u} \right| \left| \frac{\Psi'(u)}{\Psi(u) - \Psi(w)} + \frac{1}{w-u} \right| |du| \\ &:= I_{1} + I_{2} \,, \end{split}$$

where by applying (2.4) and (3.12), we have

$$I_1 \leq C_1 \frac{\sigma_1(\rho-1)}{\rho-1} \int_{|u|=\rho} \frac{du}{|w-u|} \leq C_2 \frac{\sigma_1(\rho-1)}{\rho-1} \ln \frac{1}{\rho-1} \,,$$

and by using (3.9) and (2.4), we also have

$$I_2 \leq C_1 \int_{|u|=\rho} \frac{\sigma_1(|w-u|)}{|w-u|^2} |du| \leq C_2 \frac{\sigma_1(\rho-1)}{\rho-1} \ln \frac{1}{\rho-1}.$$

That is,

(3.13)
$$\int_{|u|=\rho} \left| \frac{\partial^2 \ln g(w, u)}{\partial u^2} \right| |du| \le C \frac{\sigma_1(\rho-1)}{\rho-1} \ln \frac{1}{\rho-1}, \qquad \rho > 1.$$

By taking the second derivative of the power series (3.10) and applying the estimate in (3.13), we have, for $j = 2, 3, \ldots$,

$$\begin{split} |a_j(w)| &= \left| \frac{1}{2\pi i} \int_{|u|=\rho} \frac{1}{j(j+1)} \frac{\partial^2 \ln g(w,u)}{\partial u^2} u^{j+1} du \right| \\ &\leq \frac{\rho^{j+1}}{2\pi j^2} \int_{|u|=\rho} \left| \frac{\partial^2 \ln g(w,u)}{\partial u^2} \right| |du| \leq C \rho^{j+1} \frac{\sigma_1(\rho-1)}{j^2(\rho-1)} \ln \frac{1}{\rho-1}. \end{split}$$

By taking $\rho = 1 + \frac{1}{i}$, it follows that

$$\max_{|w|=1} \left| a_j(w) \right| \le C \frac{\sigma_1(j^{-1})}{j} \ln j.$$

We now apply this estimate to (3.11), yielding

$$\begin{split} \max_{|w|=1} |\ln \Omega_n(w)| &\leq C n \sum_{l=1}^\infty \frac{\sigma_1(1/ln)}{ln} \ln(ln) \\ &\leq C \int_n^\infty \frac{\sigma_1(1/t)}{t} \ln t \, dt = C \int_0^{1/n} \frac{\sigma_1(s)}{s} |\ln s| \, ds \\ &\leq \frac{C}{\ln n} \int_0^{1/n} \frac{\sigma_1(s)}{s} |\ln s|^2 \, ds = o\Big(\frac{1}{\ln n}\Big) \,, \end{split}$$

where (2.2) has been used. This estimate is equivalent to (3.4).

To prove (3.5) for Γ belonging to class j_2 , we will apply the inequality of Hardy-Littlewood

(3.14)
$$|\Psi'''(u)| \le C \frac{\sigma_2(|u|-1)}{|u|-1}, \qquad |u| > 1,$$

where σ_2 denotes the modulus of continuity of $\Psi''(u)$. Set

$$g_1(w, u) = \frac{\Psi'(u)}{\Psi(w) - \Psi(u)} - \frac{1}{w - u}.$$

Then by taking the logarithmic derivative of Ω_n and $g(w, w_k)$ in (2.8) and (3.6), respectively, we have

(3.15)
$$\frac{\Omega'_n(w)}{\Omega_n(w)} = \sum_{k=1}^n \frac{g'(w, w_k)}{g(w, w_k)} = \sum_{k=1}^n g_1(w, w_k),$$

where $g_1(w, u) = \Psi'(u)/(\Psi(w) - \Psi(u)) - 1/(w - u)$, hence, in view of Γ belonging to class j_2 , we have

(3.16)
$$g_1(w, u) = \sum_{j=1}^{\infty} \frac{b_j(w)}{u^j}$$

uniformly on |u|, $|w| \ge 1$. By applying (3.14) we may obtain an estimate similar to that of (3.13), namely,

$$\int_{|u|=\rho} \left| \frac{\partial^2 g_1(w, u)}{\partial u^2} \right| |du| \le C \frac{\sigma_2(\rho-1)}{\rho-1} \ln \frac{1}{\rho-1},$$

where $\rho > 1$. Hence, as before, we have

$$\max_{|w|=1} \left| b_j(w) \right| \le C \frac{\sigma_2(j^{-1})}{j} \ln j$$

and

$$\frac{\Omega_n'(w)}{\Omega_n(w)} = n \sum_{l=1}^{\infty} b_{ln}(w), \qquad |w| = 1,$$

so that

$$\max_{|w| \ge 1} \left| \frac{\Omega'_n(w)}{\Omega_n(w)} \right| \le Cn \sum_{l=1}^{\infty} \frac{\sigma_2(1/ln)}{ln} \ln(ln) \le \int_0^{1/n} \frac{\sigma_2(t)}{t} |\ln t| \, dt$$

which is o(1) by (2.3). This completes the proof of the lemma.

Remark. In [10], where Lagrange interpolation (or q=0) was considered, the Jordan curve Γ was assumed to belong to $C^{1+\delta}$, $\delta>0$. However, from our estimate (3.4) and the procedure in [10], it can be shown that the result there also holds for Γ belonging to class j_1 .

As a consequence of estimates (3.5) in Lemma 2, the identity (3.2) in Lemma 1 yields the following result.

Corollary 1. Let Γ belong to class j_2 . Then

(3.17)
$$\sum_{l \neq k} \frac{1}{z_k - z_l} = \frac{(n-1)}{2w_k \Psi'(w_k)} - \frac{\Psi''(w_k)}{2[\Psi'(w_k)]^2} + o(1)$$

uniformly in k, $1 \le k \le n$.

In the proof of Theorem 1, the following estimates will also be used.

Lemma 3. Let Γ belong to j_2 . Then for k = 1, 2, ..., n and r = 0, 1, ...

(3.18)
$$\sum_{l \neq k} \frac{1}{(z_k - z_l)^{r+1}} = O(n^{r+1})$$

and

(3.19)
$$\frac{d^r}{dz^r} \left(\frac{z - z_k}{\omega_n(z)} \right) \Big|_{z = z_k} = O(n^{r-1})$$

uniformly in k, $1 \le k \le n$.

Proof. The estimate (3.18) for r = 0 can easily be deduced by (3.17). For $r \ge 1$, by using (2.4) we have

$$\begin{split} \left| \sum_{l \neq k} \frac{1}{(z_k - z_l)^{r+1}} \right| &\leq \sum_{l \neq k} \left| \frac{1}{z_k - z_l} \right|^{r+1} \leq C_2 \sum_{l \neq k} \left| \frac{1}{w_k - w_l} \right|^{r+1} \\ &\leq 2C_2 \sum_{l=1}^{[(n-1)/2]} \frac{1}{(2 \sin l \pi / n)^{r+1}} \\ &\leq 2C_2 \sum_{l=1}^{[(n-1)/2]} \frac{1}{(4l/n)^{r+1}} = O(n^{r+1}). \end{split}$$

We are going to verify (3.19) by induction. For r = 0, by using (3.1), (3.4), and (2.5), we have (3.19). For $r \ge 1$, by the induction hypothesis and using (3.18), we obtain

$$\left(\frac{z-z_{k}}{\omega_{n}(z)}\right)^{(s+1)} \bigg|_{z=z_{k}} = -\left(\frac{z-z_{k}}{\omega_{n}(z)} \sum_{\substack{l=1 \ l \neq k}}^{n} \frac{1}{z-z_{l}}\right)^{(s)} \bigg|_{z=z_{k}}$$

$$= -\sum_{\nu=0}^{s} {s \choose \nu} \left(\frac{z-z_{k}}{\omega_{n}(z)}\right)^{(\nu)} \left(\sum_{\substack{l=1 \ l \neq k}}^{n} \frac{1}{z-z_{l}}\right)^{(s-\nu)} \bigg|_{z=z_{k}}$$

$$= -\sum_{\nu=0}^{s} {s \choose \nu} \left(\frac{z-z_{k}}{\omega_{n}(z)}\right)^{(\nu)} \sum_{\substack{l=1 \ l \neq k}}^{n} \frac{(-1)^{s-\nu}(s-\nu)!}{(z-z_{l})^{s-\nu+1}} \bigg|_{z=z_{k}}$$

$$= \sum_{\nu=0}^{n} {s \choose \nu} O(n^{n-1}) \cdot O\left(n^{s-\nu+1}\right) = O(n^{s}).$$

This completes the proof of the lemma. \Box

We are now ready to prove Theorem 1.

Proof of Theorem 1. For q = 0, from (2.7), it is clear that

$$\sigma_{k\nu}(0) = \frac{1}{\nu!} \frac{d^{\nu}}{dz^{\nu}} \left(\frac{z - z_k}{\omega_n(z)} \right) \bigg|_{z = z_k}$$

which yields (2.9) by using (3.19) in Lemma 3. We will now use induction in q. Indeed, by the induction hypothesis and using (3.19) in Lemma 3 it follows that

$$\begin{split} \sigma_{k\nu}(q+1) &= \frac{1}{\nu!} \left. \frac{d^{\nu}}{dz^{\nu}} \left(\frac{z-z_k}{\omega_n(z)} \right)^{q+2} \right|_{z=z_k} \\ &= \frac{1}{\nu!} \sum_{j=0}^{\nu} \binom{\nu}{j} \frac{d^j}{dz^j} \left(\frac{z-z_k}{\omega_n(z)} \right)^{q+1} \frac{d^{\nu-j}}{dz^{\nu-j}} \left(\frac{z-z_k}{\omega_n(z)} \right) \right|_{z=z_k} \\ &= \frac{1}{\nu!} \sum_{j=0}^{\nu} \binom{\nu}{j} j! O\left(\frac{1}{n^{q-j+1}} \right) O\left(n^{\nu-j-1} \right) = O\left(\frac{1}{n^{q+2-\nu}} \right). \end{split}$$

This completes the proof of Theorem 1. \Box

4. Proof of Theorem 2

We first establish the existence and uniqueness of $\widetilde{H}_N(f;\cdot)$ for any given $f\in A(\overline{D})$. Since N=(q+1)n-1, it follows from the definition (2.11) that $A_{k_j}\in\pi_N$. Hence, $\widetilde{H}_N(f;\cdot)\in\pi_N$ also. Next, we will establish (2.11). For $l\neq k$, it is clear from the first factor that $A_{k_j}^{(\nu)}(z_l)=0$ for all ν , $j=0,\ldots,q$. We now consider the case l=k. From (2.10) and (2.7), it follows that

$$\begin{split} A_{kj}(z) &= \left(\frac{\omega_n(z)}{z-z_k}\right)^{q+1} \frac{(z-z_k)^j}{j!} \left[\left(\frac{z-z_k}{\omega_n(t)}\right)^{q+1} - \sum_{\mu=q-j+1}^{\infty} \alpha_{k\mu} (z-z_k)^{\mu} \right] \\ &= \frac{(z-z_k)^j}{j!} - \left(\frac{\omega_n(z)}{z-z_k}\right)^{q+1} \frac{1}{j!} \sum_{\mu=q-j+1}^{\infty} \alpha_{k\mu} (z-z_k)^{\mu+j}. \end{split}$$

Hence, for $\nu < j$, we have $A_{kj}^{(\nu)}(z_k) = 0$. For $\nu = j$, then $A_{kj}^{(j)}(z_k) = 1$. Finally, for $\nu > j$, we also have $A_{kj}^{(\nu)}(z_k) = 0$. This establishes the interpolatory property of A_{kj} in (2.11). Thus, by defining $\widetilde{H}_N(f;\cdot)$ as in (2.12), $\widetilde{H}_N(f;\cdot)$ solves the interpolation problem (1.1). The uniqueness of $\widetilde{H}_N(f;\cdot)$ is trivial. \square

In order to establish the estimates (2.13) and (2.14), we need the following lemma.

Lemma 4. Let Γ belong to class j_1 . Then

(4.1)
$$\max_{z \in \overline{D}} \sum_{k=1}^{n} \left| \frac{\omega_n(z)}{(z - z_k) \omega_n'(z_k)} \right| = O(\ln n),$$

(4.2)
$$\max_{z \in \overline{D}} \sum_{k=1}^{n} \left| \frac{\omega_n(z)}{(z - z_k) \omega_n'(z_k)} \right|^{1+\delta} = O(1), \qquad \delta > 0,$$

and for 1 ,

(4.3)
$$\left\| \sum_{k=1}^{n} b_{k} \frac{\omega_{n}(z)}{(z-z_{k})\omega'_{n}(z_{k})} \right\|_{n} = O\left(\max_{1 \leq k \leq n} |b_{k}| \right).$$

Proof. From (2.8) and (3.1), we have

(4.4)
$$\frac{\omega_n(z)}{(z-z_k)\omega_n'(z_k)} = \frac{w_k \Psi'(w_k)(w^n-1)}{n(\Psi(w)-\Psi(w_k))} \frac{\Omega_n(w)}{\Omega_n(w_k)},$$

where $z = \Psi(w)$ and $z_k = \Psi(w_k)$. For the unit disk, it is well known (cf. Gaier [6, pp. 80–81]) that

$$\max_{|w| \le 1} \sum_{k=1}^{n} \left| \frac{w_k}{n} \frac{w^n - 1}{w - w_k} \right| = O(\ln n).$$

In addition, for $\delta > 0$ it is also well known (cf. [9]) that

$$\max_{|w| \le 1} \sum_{k=1}^{n} \left| \frac{w_k}{n} \frac{w^n - 1}{w - w_k} \right|^{1 + \delta} = O(1).$$

Hence, by applying (2.4), (2.5), and (3.4) in Lemma 2 to (4.4), we have both (4.1) and (4.2). Next, by (4.4), it follows that

$$\begin{split} \sum_{k=1}^{n} b_{k} \frac{\omega_{n}(z)}{(z - z_{k})\omega'_{n}(z_{k})} \\ &= \sum_{k=1}^{n} b_{k} \frac{w_{k} \Psi'(w_{k})(x^{n} - 1)}{n(\Psi(w) - \Psi(w_{k}))} \left(\frac{\Psi_{n}(w)}{\Psi_{n}(w_{k})} - 1 \right) + \sum_{k=1}^{n} b_{k} \frac{w_{k}}{n} \frac{w^{n} - 1}{w - w_{k}} \\ &+ \sum_{k=1}^{n} b_{k} \frac{w_{k}}{n} (w^{n} - 1) \left[\frac{\Psi'(w_{k})}{\Psi(w) - \Psi(w_{k})} - \frac{1}{w - w_{k}} \right] \\ &:= I_{5} + I_{6} + I_{7}. \end{split}$$

By applying (4.1) and (3.4) in Lemma 2, we obtain

$$\max_{z \in \overline{D}} |I_5| = O\left(\max_{1 \le k \le n} |b_k|\right).$$

In order to estimate I_7 , we may assume, without loss of generality, that |w-1| is not greater than $|w-w_k|$, $k=1,2,\ldots,n-1$, so that

$$|\arg w| \le \frac{\pi}{n}, \qquad \left|\frac{w^n-1}{w-1}\right| \le n,$$

and

$$\left|\frac{1}{w-w_k}\right| \leq \left\{ \begin{array}{ll} \pi/n\,, & 1 \leq k \leq n/2, \\ (n-k)/k\,, & n/2 < k \leq n-1. \end{array} \right.$$

Hence from (3.9), we have

(4.5)
$$\left| b_n \frac{w_n}{n} (w^n - 1) \left[\frac{\Psi(1)}{\Psi(w) - \Psi(1)} - \frac{1}{w - 1} \right] \right| \le C|b_n|$$

and

$$\begin{aligned} \left| \sum_{k=1}^{n-1} b_k \frac{w_k}{n} (w^n - 1) \left[\frac{\Psi'(w_k)}{\Psi(w) - \Psi(w_k)} - \frac{1}{w - w_k} \right] \right| \\ & \leq C \max_{1 \leq k \leq n-1} |b_k| \frac{1}{n} \sum_{k=1}^{n-1} \frac{\sigma_1(|w - w_k|)}{|w - w_k|} \\ & \leq C \max_{1 \leq k \leq n-1} |b_k| \frac{1}{n} \sum_{k=1}^{n} \frac{\sigma_1(k/n)}{k/n} \\ & \leq C \max_{1 \leq k \leq n-1} |b_k| \int_0^1 \frac{\sigma_1(t)}{t} dt \leq C \max_{1 \leq k \leq n-1} |b_k|, \end{aligned}$$

where the condition in (2.2) is used. Thus combining (4.5) and (4.6), we obtain

$$\max_{|z| \in \overline{D}} |I_7| = O\left(\max_{1 \le k \le n} |b_k|\right).$$

Finally, by the Marcinkiewicz-Zygmund inequality for 1 (cf. [15]), we have

$$||I_6||_p = O\left(\frac{1}{n}\sum_{k=1}^n |b_k|^p\right)^{1/p} = O\left(\max_{1 \le k \le n} |b_k|\right).$$

This completes the proof of the lemma.

We now return to the estimates of (2.13) and (2.14) and obtain

$$\begin{split} A_{kj}(z) &= \left(\frac{\omega_n(z)}{(z-z_k)}\right)^{q+1} \frac{1}{j!} \alpha_{k \ q-j} (z-z_k)^q \\ &+ \left(\frac{\omega_n(z)}{z-z_k}\right)^{q+1} \frac{(z-z_k)^j}{j!} \sum_{\nu=0}^{q-j-1} \alpha_{k\nu} (z-z_k)^\nu \\ &:= I_8(z) + I_9(z). \end{split}$$

Hence, by (3.1) in Lemma 1, (3.4) in Lemma 2, (2.5), (2.9) in Theorem 1, and (4.1), (4.3) in Lemma 4, we have

$$\sum_{k=1}^{n} |I_8(z)| = O\left(\frac{1}{n^j}\right) \max_{z \in \overline{D}} \sum_{k=1}^{n} \left| \frac{\omega_n(z)}{(z - z_k)\omega_n'(z_k)} \right| = O\left(\frac{\ln n}{n^j}\right)$$

and for 1

$$\left\| \sum_{k=1}^n b_k I_q(z) \right\|_j = O(n) \max_{1 \le k \le n} \left| b_k \alpha_{k-q-j} \right| = O\left(\frac{1}{n^j}\right) \max_{1 \le k \le n} |b_k|.$$

Similarly, by (3.1) in Lemma 1, (3.4) in Lemma 2, (2.5), (2.9) in Theorem 1, and (4.2) in Lemma 4, we have

$$\sum_{k=1}^{n} \left| I_9(z) \right| = O\left(\frac{1}{n^j}\right).$$

By combining these estimates, we have established both (2.13) and (2.14). \Box

5. Proof of Theorems 3-6

Let Γ belong to class j_2 and $f \in A(\overline{D})$. It is known (cf. Theorems 1 and 6 in [5, Chapter 9]) that there exists $P_N \in \pi_N$ such that

(5.1)
$$\max_{z \in \overline{D}} |f(z) - P_N(z)| = O\left(\omega\left(f; \frac{1}{N}\right)\right)$$

and

(5.2)
$$\max_{z \in \overline{D}} \left| P_N^{(m)}(z) \right| = O\left(N^m \omega \left(f; \frac{1}{N} \right) \right), \qquad m = 1, 2, \dots.$$

By using the first part of Theorem 2, we have

(5.3)
$$f(z) - H_N(f; z) = f(z) - P_N(z) + \sum_{k=1}^{N} (P_N(z_k) - f(z_k)) A_{k0}(z).$$
$$+ \sum_{k=1}^{n} \sum_{i=1}^{q} P_N^{(j)}(z_k) A_{kj}(z)$$

Hence, by applying (2.13) and (2.14) of Theorem 2 and (5.1), (5.2) above, we have completed the proof of Theorem 3. Next, we write

$$f(z) - \widetilde{H}_N(f; z) = f(z) - H_N(f; z) + \sum_{k=1}^N \sum_{i=1}^q a_k^{(i)} A_{kj}(z).$$

Here, by using the hypothesis (2.17) and Theorem 3, we have

$$\max_{z \in \overline{D}} |f(z) - H_N(f; z)| \to 0,$$

and by using the hypothesis (2.16) and applying (2.13) in Theorem 2, we also have

$$\max_{z\in\overline{D}}\left|\sum_{k=1}^{N}\sum_{j=1}^{q}a_{k}^{(j)}A_{kj}(z)\right|\to0.$$

This completes the proof of Theorem 4. The proofs of Theorems 5 and 6 are similar simply by applying (2.14) in Theorem 2, noting that Hölder's inequality can be applied for 0 and using the result for <math>p = 2. \square

6. FINAL REMARKS

In this section, we give examples of the domain D whose boundary curve Γ belongs to classes j_1 and j_2 . Let Γ be of class C^1 and denote its angle of inclination as a function of arc length s by $\theta(s)$, $0 \le s \le |\Gamma|$, the length of Γ .

Proposition 1. If Γ satisfies

(6.1)
$$\int_0^a \frac{\omega(\theta;t)}{t} |\ln t|^3 dt < \infty, \qquad a > 0,$$

then Γ belongs to class j_1 .

Of course, every Γ of class $C^{1+\delta}$ for some $\delta>0$ satisfies (6.1). We also have the following

Proposition 2. If Γ satisfies

(6.2)
$$\int_0^a \frac{\omega(\theta';t)}{t} \left| \ln t \right|^2 dt < \infty, \qquad a > 0,$$

then Γ belongs to class j_2 .

Of course, every Γ of class $C^{2+\delta}$ for some $\delta > 0$ satisfies (6.2). To prove these results, we need the following result in [14]: If

(6.3)
$$\int_0^a \frac{\omega(\theta^{(n)};t)}{t} dt < \infty, \qquad a > 0,$$

then $\Psi^{(n+1)}$ is continuous on |w| > 1 and

(6.4)
$$\omega\left(\Psi^{(n+1)};t\right) = O\left(\int_0^t \frac{\omega(\theta^{(n)};\tau)}{\tau} d\tau + t \int_t^a \frac{\omega(\theta^{(n)};\tau)}{\tau^2} d\tau + t \ln\frac{1}{t}\right), \quad a > 0.$$

Let n = 0. If (6.1) is satisfied, so is (6.3), and hence Ψ' is continuous on $|w| \ge 1$. Using (6.4) for n = 0, we have

$$\int_{0}^{a} \frac{\omega(\Psi';t)}{t} |\ln t|^{2} dt$$

$$= O\left(\int_{0}^{a} \left(\int_{0}^{t} \frac{\omega(\theta;\tau)}{\tau} d\tau\right) \frac{|\ln t|^{2}}{t} dt + \int_{0}^{a} \left(t \int_{t}^{a} \frac{\omega(\theta;\tau)}{\tau^{2}} d\tau\right) \frac{|\ln t|^{2}}{t} dt + \int_{0}^{a} \frac{t \ln(1/t)}{t} |\ln t|^{2} dt\right)$$

$$= O\left(\int_{0}^{a} \left(\int_{\tau}^{a} \frac{|\ln t|^{2}}{t} dt\right) \frac{\omega(\theta;\tau)}{\tau} d\tau + \int_{0}^{a} \left(\int_{0}^{\tau} |\ln t|^{2} dt\right) \frac{\omega(\theta;\tau)}{\tau^{2}} d\tau\right) + O(1)$$

$$= O\left(\int_{0}^{a} \frac{\omega(\theta;t)}{t} |\ln t|^{3} dt\right) + O(1) < \infty.$$

That is, Γ is of class j_1 . This completes the proof of Proposition 1. The proof of Proposition 2 is similar by applying n=1 in (6.3) and (6.4), using the condition (6.2). \square

We conclude this paper by posing three open problems.

(1) In this paper, we consider the $(0, 1, \ldots, q)$ Hermite-Fejér interpolation problem where the interpolatory polynomials $H_N(f; \cdot)$ satisfy $H_N^{(j)}(f; z_k) = 0$, $j = 1, \ldots, q$ and $k = 1, \ldots, n$. It is interesting to study if the convergence and estimates in this paper are still valid if we impose a more general interpolatory condition:

$$H_N^{(j)}(f; z_k) = 0$$
 for $j = 1, ..., q_k, k = 1, ..., n$,

where $q_k = q_k(n)$ satisfies $\max_{1 \le k \le n} q_k(n) \le M < \infty$ for all n.

- (2) How much can the Fejér points $z_k = z_{nk}$ be perturbed on Γ so that the convergence and estimates in this paper are still valid?
- (3) If D is different from the unit disk, do there exist $(0, m_1, \ldots, m_q)$ Birkhoff-Fejér interpolants $B_N(f; \cdot)$; that is,

$$B_N(f; z_k) = f(z_k)$$
 and $B_N^{(m_j)}(f; z_k) = 0$,

for $j=1,\ldots,q$ and $k=1,\ldots,n$? If $B_N(f;\cdot)$ exist, do they converge to f in L^p , 0 ? For the unit disk, results on convergence and estimates have been obtained in [10].

REFERENCES

- 1. S. Ya. Al'per, On the approximation in the mean to analytic functions in classes E_p , Investigation of Modern Problems of Theory of Functions of a Complex Variable, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 273-286.
- 2. S. Ya. Al'per and G. I. Kalinogorskaja, *The convergence of Lagrange interpolation on polynomials in the complex domain*, Izv. Vysš. Učebn. Zaved. Mat. **1969**, no. 11(60), 13-23.
- 3. J. H. Curtiss, Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points, Duke Math. J. 32 (1965), 187-204.
- 4. P. L. Duren, *Theory of H^p space*, Academic Press, New York, 1970.
- V. K. Dzjadyk, An introduction to uniform approximation to functions by polynomials, Nauka, Moscow, 1977.
- D. Gaier, Über Interpolation in regelmässig verteilten Punkten mit Nebenbedinguner, Math. Z. 61 (1954), 119–133.
- 7. _____, Vorlesungen über Approximation im Komplexen, Birkhauser-Verlag, Basel, 1980.
- Xie-Chang Shen, On the order of approximation by Hermite-Fejér polynomials in a Jordan domain, Approximation Theory VI, Academic Press, New York, 1989.
- 9. ____, The convergence of (0, 1, ..., q) Hermite-Fejér interpolating polynomials on the roots of unity, Chinese Ann. Math. (to appear).
- 10. Xie-Chang Shen and Le-Fan Zhong, Approximation in the mean by Lagrange interpolating polynomials in the complex plane, Kuxue Tongbao (A Monthly of Sciences) 33 (1988), 810-814.
- 11. J. Szabados and A. K. Varma, On an open problem of P. Turán concerning Birkhoff interpolation on the roots of unity, J. Approx. Theory 47 (1986), 255-264.

- 12. A. K. Varma, Complex interpolating polynomials, Proc. Amer. Math. Soc. 103 (1988), 125-130.
- 13. P. Vertesi, Linear operator on the roots of unity, Studia Sci. Math. Hungar. 15 (1980), 241-245.
- 14. C. M. Wu, The boundary properties of conformal mapping, Acta Math. Sinica 7 (1957), 271-276.
- 15. A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1968.

Department of Mathematics, Texas A&M University, College Station, Texas 77843 Institute of Mathematics, Peking University, People's Republic of China